beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.

نویسندگان

  • A H Wikramanayake
  • L Huang
  • W H Klein
چکیده

In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events along the animal-vegetal axis in sea urchin embryos are largely unknown. Nuclear beta-catenin is seen in vegetal cells of the early embryo, suggesting that this protein plays a role in specifying vegetal cell fates. Here, we test this hypothesis and show that beta-catenin is necessary for vegetal plate specification and is also sufficient for endoderm formation. In addition, we show that beta-catenin has pronounced effects on animal blastomeres and is critical for specification of aboral ectoderm and for ectoderm patterning, presumably via a noncell-autonomous mechanism. These results support a model in which a Wnt-like signal released by vegetal cells patterns the early embryo along the animal-vegetal axis. Our results also reveal similarities between the sea urchin animal-vegetal axis and the vertebrate dorsal-ventral axis, suggesting that these axes share a common evolutionary origin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Animal-vegetal axis patterning mechanisms in the early sea urchin embryo.

We discuss recent progress in understanding how cell fates are specified along the animal-vegetal axis of the sea urchin embryo. This process is initiated by cell-autonomous, maternally directed, mechanisms that establish three unique gene-regulatory domains. These domains are defined by distinct sets of vegetalizing (beta-catenin) and animalizing transcription factor (ATF) activities and their...

متن کامل

Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled.

beta-Catenin has a central role in the early axial patterning of metazoan embryos. In the sea urchin, beta-catenin accumulates in the nuclei of vegetal blastomeres and controls endomesoderm specification. Here, we use in-vivo measurements of the half-life of fluorescently tagged beta-catenin in specific blastomeres to demonstrate a gradient in beta-catenin stability along the animal-vegetal axi...

متن کامل

Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos.

Previous studies in sea urchin embryos have demonstrated that nuclearization of beta-catenin is essential for initial steps in the specification of endoderm and mesenchyme, which are derived from vegetal blastomeres. This process begins at the 4th and extends through the 9th cleavage stage, an interval in which the SpSoxB1 transcription regulator is downregulated by beta-catenin-dependent gene ...

متن کامل

SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover.

Patterning of cell fates along the sea urchin animal-vegetal embryonic axis requires the opposing functions of nuclear beta-catenin/TCF-Lef, which activates the endomesoderm gene regulatory network, and SoxB1, which antagonizes beta-catenin and limits its range of function. A crucial aspect of this interaction is the temporally controlled downregulation of SoxB1, first in micromeres and then in...

متن کامل

p38 MAPK is essential for secondary axis specification and patterning in sea urchin embryos.

Most eggs in the animal kingdom establish a primary, animal-vegetal axis maternally, and specify the remaining two axes during development. In sea urchin embryos, the expression of Nodal on the oral (ventral) side of the embryo is the first known molecular determinant of the oral-aboral axis (the embryonic dorsoventral axis), and is crucial for specification of the oral territory. We show that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 16  شماره 

صفحات  -

تاریخ انتشار 1998